Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            This work addresses the challenges of acquiring additive manufacturing data, given the complexities and design possibilities of such structures. Researchers in additive manufacturing struggle with scarcity and unsuitability of 2D datasets which pose further difficulties. To overcome these concerns, this research presents an application, AddLat2D, for generating 2D lattice structure datasets tailored to user specifications. Building upon a previous version of the application (Baldwin et al., 2023, 2022), this work highlights our development and usage of AddLat2D to generate datasets that have custom image size and pixel intensity values.more » « less
- 
            Abstract The temperature history of an additively manufactured part plays a critical role in determining process–structure–property relationships in fusion-based additive manufacturing (AM) processes. Therefore, fast thermal simulation methods are needed for a variety of AM tasks, from temperature history prediction for part design and process planning to in situ temperature monitoring and control during manufacturing. However, conventional numerical simulation methods fall short in satisfying the strict requirements of time efficiency in these applications due to the large space and time scales of the required multiscale simulation. While data-driven surrogate models are of interest for their rapid computation capabilities, the performance of these models relies on the size and quality of the training data, which is often prohibitively expensive to create. Physics-informed neural networks (PINNs) mitigate the need for large datasets by imposing physical principles during the training process. This work investigates the use of a PINN to predict the time-varying temperature distribution in a part during manufacturing with laser powder bed fusion (L-PBF). Notably, the use of the PINN in this study enables the model to be trained solely on randomly synthesized data. These training data are both inexpensive to obtain, and the presence of stochasticity in the dataset improves the generalizability of the trained model. Results show that the PINN model achieves higher accuracy than a comparable artificial neural network trained on labeled data. Further, the PINN model trained in this work maintains high accuracy in predicting temperature for laser path scanning strategies unseen in the training data.more » « less
- 
            Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.more » « less
- 
            Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.more » « less
- 
            Capturing Local Temperature Evolution During Additive Manufacturing Through Fourier Neural OperatorsHigh-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, the complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. Additionally, many models report a low mean square error (MSE) across the entire domain (part). However, in each time step, most areas of the domain do not experience significant changes in temperature, except for the heat-affected zones near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This paper presents a data-driven model that uses Fourier Neural Operator to capture the local temperature evolution during the additive manufacturing process. In addition, the authors propose to evaluate the model using the R2 metric, which provides a relative measure of the model’s performance compared to using mean temperature as a prediction. The model was tested on numerical simulations based on the Discontinuous Galerkin Finite Element Method for the Direct Energy Deposition process, and the results demonstrate that the model achieves high fidelity as measured by R2 and maintains generalizability to geometries that were not included in the training process.more » « less
- 
            Abstract The study presented in this paper applies hidden Markov modeling (HMM) to uncover the recurring patterns within a neural activation dataset collected while designers engaged in a design concept generation task. HMM uses a probabilistic approach that describes data (here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on the fMRI data's temporal and spatial properties, HMM enables an automatic inference on states in neurocognitive activation data that are highly likely to occur in concept generation. The states with a higher likelihood of occupancy show more activation in the brain regions from the executive control network, the default mode network, and the middle temporal cortex. Different activation patterns and transfers are associated with these states, linking to varying cognitive functions, for example, semantic processing, memory retrieval, executive control, and visual processing, that characterize possible transitions in cognition related to concept generation. HMM offers new insights into cognitive dynamics in design by uncovering the temporal and spatial patterns in neurocognition related to concept generation. Future research can explore new avenues of data analysis methods to investigate design neurocognition and provide a more detailed description of cognitive dynamics in design.more » « less
- 
            Moghaddam, Mohsen; Marion, Tucker; Holtta-Otto, Katja; Fu, Kate; Olechowski, Alison; McComb, Christopher (Ed.)The early-stage product design and development (PDD) process fundamentally involves the processing, synthesis, and communication of a large amount of information to make a series of key decisions on design exploration and specification, concept generation and evaluation, and prototyping. Although most current PDD practices depend heavily on human intuition, advances in computing, communication, and human–computer interaction technologies can transform PDD processes by combining the creativity and ingenuity of human designers with the speed and precision of computers. Emerging technologies like artificial intelligence (AI), cloud computing, and extended reality (XR) stand to substantially change the way designers process information and make decisions in the early stages of PDD by enabling new methods such as natural language processing, generative modeling, cloud-based virtual collaboration, and immersive design and prototyping. These new technologies are unlikely to render the human designer obsolete, but rather do change the role that the human designer plays. Thus, it is essential to understand the designer's role as an individual, a team, and a group that forms an organization. The purpose of this special issue is to synthesize the state-of-the-art research on technologies and methods that augment the performance of designers in the front-end of PDD—from understanding user needs to conceptual design, prototyping, and development of systems architecture while also emphasizing the critical need to understand the designer and their role as well.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available